Tiefsetzsteller

1. Stellen Sie die Spannungsdifferentialgleichung für u_A auf. Wodurch unterscheiden sich die Betriebszustände Schalter S ein (t_e) und Schalter S aus (t_a) . Geben Sie die Lösung der DGL an.

Aus dem Ersatzschaltbild (Bild 7) kann die inhomogene Spannungsdifferentialgleichung aufgestellt werden (zeitabhängige Größen kleingeschrieben):

$$L_A \cdot \frac{di_A}{dt} + R_A \cdot i_A = u_A - E_A \tag{1}$$

Die allgemeine Lösung setzt sich zusammen aus dem homogenen und dem inhomogenen Anteil (eingeschwungener Zustand):

$$i_A = i_{Ah} + i_{Ai} = C \cdot e^{-\frac{t - t_0}{T_A}} + \frac{u_A - E_A}{R_A}$$
 (2)

Die Integrationskonstante C ergibt sich aus der Anfangsbedingung zum Zeitpunkt t_0 :

$$i_A(t=t_0) = i_{A0} = C \cdot 1 + \frac{u_A - E_A}{R_A} \implies C = i_{A0} - \frac{u_A - E_A}{R_A}$$
 (3)

Somit lautet die allgemeine Lösung der Spannungsdifferentialgleichung (1):

$$i_A = \left(i_{A0} - \frac{u_A - E_A}{R_A}\right) e^{-\frac{t - t_0}{T_A}} + \frac{u_A - E_A}{R_A} = i_{A0} e^{-\frac{t - t_0}{T_A}} + \frac{u_A - E_A}{R_A} \left(1 - e^{-\frac{t - t_0}{T_A}}\right)$$
(4)

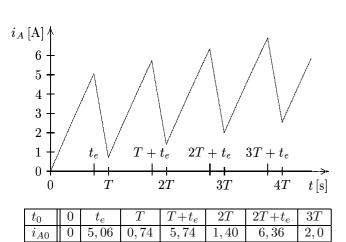
Im Schaltzustand "S ein" liegt an der Last die Spannung $u_A = U_Q$, im Schaltzustand "S aus" ist die Lastspannung $u_A = 0$. Hiermit ergeben sich die beiden Lösungen:

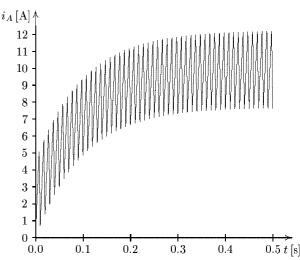
a) S ein
$$(u_A = U_Q)$$
: $i_A = i_{A0} \cdot e^{-\frac{t-t_0}{T_A}} + \frac{U_Q - E_A}{R_A} \cdot \left(1 - e^{-\frac{t-t_0}{T_A}}\right)$
b) S aus $(u_A = 0)$: $i_A = i_{A0} \cdot e^{-\frac{t-t_0}{T_A}} - \frac{E_A}{R_A} \cdot \left(1 - e^{-\frac{t-t_0}{T_A}}\right)$ (5)

mit i_{A0} Wert des Stromes beim Integrationsbeginn zum Zeitpunkt t_0 (Endwert des vorangegangenen Integrationsintervalls).

 t_0 Zeitpunkt des Integrationsbeginns (Ein: $t_0 = kT$; Aus: $t_0 = t_e + kT$; k = 0, 1, 2, ...)

Wird die Anlage eingeschaltet und befindet sie sich nicht im Lückbereich, so baut sich der Strom von Null weg auf, bis der Gleichstrommittelwert erreicht ist. Mit den oben angegebenen Werten ergibt sich der folgende Verlauf.





2. Berechnen Sie die Ankerzeitkonstante T_A .

Die Ankerzeitkonstante T_A ist definiert als das Verhältnis zwischen Ankerinduktivität L_A und Ankerwiderstand R_A :

$$T_A = \frac{L_A}{R_A} = \frac{10}{100} \frac{\text{mH}}{\text{m}\Omega} = \underline{0.1 s} \tag{6}$$

3. Berechnen Sie das Übersetzungsverhältnis m für $U_A = U_{Amax}$ bei nichtlückendem Betrieb.

Das Übersetzungsverhältnis m gibt das Verhältnis zwischen Last- und Quellenspannung an:

$$m = \frac{U_{Amax}}{U_Q} = \frac{18 \,\mathrm{V}}{24 \,\mathrm{V}} = \frac{3}{\underline{4}} \tag{7}$$

4. Berechnen Sie den maximalen Tastgrad a ($U_A = U_{Amax}$, nichtlückender Betrieb).

Der Tastgrad bzw. das Tastverhältnis a gibt das Verhältnis von Einschaltzeit t_e des schaltenden Bauelements (S) zur Periodendauer T an. Da beim Tiefsetzsteller das Übersetzungsverhältnis m und der Tastgrad a gleich sind, ergibt sich hier für das maximale a:

$$a = \frac{t_e}{T} = m = \frac{U_{Amax}}{U_Q} = \frac{3}{4} \tag{8}$$

5. Geben sie obere und untere Grenze für die Pulsdauer T und die Schaltfrequenz f_T an.

Die **obere Grenze** wird vorgegeben durch den Wunsch, daß die Pulsdauer T möglichst klein gegen die Ankerzeitkonstante T_A sein soll, da dann im linearen Kennlinienbereich gefahren wird:

$$T_{max} \ll T_A \Longrightarrow T_{max} = 0, 1 \cdot T_A = \underline{10 \,\mathrm{ms}}$$
 (9)

Die **untere Grenze** wird bestimmt durch die minimale Einschaltzeit t_{emin} des Halbleiterschalters S. Weiter soll hier U_{Amax} stets kleiner als U_Q sein, so daß noch das Tastverhältnis a als weitere beschränkende Größe hinzukommt:

$$T_{min} \geq t_{emin} \implies T_{min} = \frac{t_{emin}}{a} = \frac{t_{emin}}{m} = 0,75 \,\mathrm{ms} \cdot \frac{4}{3} = \underline{1 \,\mathrm{ms}}$$
 (10)

Die Frequenzen ergeben sich einfach als Kehrwerte der entsprechenden Einschaltdauern.

$$f_{min} = \frac{1}{T_{max}} = \frac{1}{10 \,\text{ms}} = \underline{100 \,\text{Hz}} \qquad f_{max} = \frac{1}{T_{min}} = \underline{1 \,\text{ms}} = \underline{1 \,\text{kHz}} \qquad (11)$$

6. Welcher Wert ergibt sich für den Mittelwert des Laststromes I_A bei $U_A = U_{Amax}$? Bei einem maximalen Mittelwert der Ankerspannung $U_{Amax} = 18 \text{ V}$ ergibt sich:

$$I_A = \frac{U_{Amax} - E_A}{R_A} = \frac{U_A - E_A}{R_A} = \frac{18 \,\mathrm{V} - 17 \,\mathrm{V}}{0.1 \,\Omega} = \underline{10 \,\mathrm{A}}$$
 (12)

Da der Mittelwert aus der Integration über eine Periode gebildet wird, trägt die Induktivität L_A im stationären Zustand nicht zum Gleichstrommittelwert bei.

7. Es werden nun die Verhältnisse an der Lückgrenze untersucht $(T=10\,\mathrm{ms})$. Wodurch läßt sich diese Grenze charakterisieren? Vergleichen Sie die Lösungen der Spannungsdifferentialgleichungen für $R_A \neq 0$ und $R_A=0$.

An der Lückgrenze wird der Stromfluß gerade noch nicht unterbrochen, der Strom i_A wird innerhalb der Zeit, in der der Schalter S ausgeschaltet ist, wieder auf Null abgebaut, d. h. der Strom hat zu Beginn und am Ende einer Schaltperiode den Wert Null. Wird die Periode von t=0 bis t=T betrachtet, so ergibt sich aus Gleichung (5) a) für den maximalen Stromwert bei $t=t_e$

$$i_{Amax}(t=t_e) = \frac{U_Q - E_A}{R_A} \cdot \left(1 - e^{-\frac{t_e - t_0}{T_A}}\right) \tag{13}$$

Um den Tastgrad a_L für die Lückgrenze zu ermitteln, wird dieser Maximalwert als Anfangsstrom i_{A0} in Gleichung (5) b) eingesetzt, der Startzeitpunkt ist hier t_e , Endzeitpunkt ist T.

$$i_A(t=T) = \underbrace{\frac{U_Q - E_A}{R_A} \cdot \left(1 - e^{-\frac{t_e - t_0}{T_A}}\right)}_{i_{Amax}} \cdot e^{-\frac{T - t_e}{T_A}} - \underbrace{\frac{E_A}{R_A} \cdot \left(1 - e^{-\frac{T - t_e}{T_A}}\right)}_{i_{Amax}}$$

$$i_A(t=T) = 0 \stackrel{!}{=} \frac{1}{R_A} \cdot \left[U_Q e^{-\frac{T}{T_A}(1-a)} + (U_Q - E_A) e^{-\frac{T}{T_A}} - E_A \right]$$
 (14)

Nach aufwendiger Rechnung ergibt sich folgende Gleichung für a_L :

$$a_L = 1 + \frac{T_A}{T} \cdot \ln \left(\frac{E_A + (U_Q - E_A) e^{-\frac{T}{T_A}}}{U_Q} \right)$$
 (15)

Mit den Zahlenwerten eingesetzt:

$$a_L = 1 + 10 \cdot \ln \left(\frac{0 + 17 + 7e^{-0.1}}{24} \right) = \underline{0.7185}$$

Um die Rechnung zu vereinfachen, wird die Annahme getroffen, daß der Widerstand R_A gegenüber der Induktivität vernachlässigbar ist und somit zu Null gesetzt werden kann. Die Lösung der Spannungs-DGL mit $R_A = 0$:

$$L_A \cdot \frac{di_A}{dt} = u_A - E_A$$

ergibt sich somit zu

$$i_A = i_{A0} + \frac{u_A - E_A}{L_A} \cdot (t - t_0)$$
 (16)

Bei gleichem Rechengang wie oben errechnet sich der Strom zu

$$i_A(t=T) = 0 \stackrel{!}{=} \frac{U_Q - E_A}{L_A} \cdot (t_e - t_0) - \frac{E_A}{L_A} \cdot (T - t_e) = \frac{a \cdot U_Q - E_A}{L_A} \cdot T$$
 (17)

Für a_L ergibt sich hier wesentlich einfacher:

$$a_L = \frac{E_A}{U_Q} = \frac{17 \,\mathrm{V}}{24 \,\mathrm{V}} = \underline{0,7083} \tag{18}$$

8. Berechnen Sie für beide Fälle die Schwankungsbreite Δi_A des Laststromes bei Vernachlässigung des Widerstands R_A ? Wie groß ist jeweils der Mittelwert des Laststromes I_A ?

An der Lückgrenze ist die Schwankungsbreite des Laststroms identisch dem maximalen Stromwert i_A zum Zeitpunkt t_e . Mit den Gleichungen (13) und (16) berechnt sich Δi_A zu:

Am Zeitverlauf ist leicht abzulesen, daß die Differenz zwischen den beiden Kurven nur gering ist, eine Vernachlässigung von R_A deshalb erlaubt ist.

9. Welchen Wert nimmt die Lastspannung u_A im Lückbereich an und in welche Richtung ändert sich damit der Gleichspannungsmittelwert U_A ?

Innerhalb des Lückbereichs, d.h. der Stromfluß ist zeitweise unterbrochen, nimmt die Lastspannung u_A den Wert der induzierten Gegenspannung E_A an (siehe Angabenblatt, Bild 5 b, lückender Betrieb). Deshalb erhöht sich im lückenden Betrieb der Gleichspannungsmittelwert U_A abhängig vom Strom i_A .

10. Wie kann die Schwankungsbreite Δi_A verringert werden?

Bei unveränderter Schaltung kann über die Tastperiode T die Lückgrenze beeinflußt werden, d.h. bei immer kleinerem T wird die Lückgrenze immer später erreicht.

Bei den Bauelementen kann besonders über L_A ("Größe des Energiespeichers") die Lückgrenze beeinflußt werden.

Bei PWM wird in der Regel die Schaltperiode T so an die Schaltungsbauelemente angepaßt, daß es zu keinem Lückbetrieb kommt.